Эпистатическое наследование окраски шерсти у собак

Эпистатическое наследование окраски шерсти у собак

Поговорим об одном из распространенных типов взаимодействия генов — эпистазе. Эпистаз — это явление, при котором проявление одного гена препятствует проявлению другого гена. Рассмотрим, как это работает.

В прошлых статьях мы много говорили о доминантных и рецессивных аллелях гена. Напомним, что доминантный аллель проявляется в фенотипе уже у носителей (у гетерозиготных организмов), а рецессивный — только в гомозиготном состоянии (см статью о втором законе Менделя).

Важно понимать, что говоря о взаимоотношениях доминантных и рецессивных аллелей, мы имеем в виду подавление одного варианта гена другим вариантом того же самого гена. Например, ay, aw, at и a — это разные аллельные варианты гена — ASIP (локус A), расположенные в порядке от самого доминантного к самому рецессивному.

Однако воздействовать на проявление того или иного гена могут не только его разные аллели, но и мутации в других генах. Приведем пример: у мышей окрас шерсти контролируется множеством генов. При этом мутация в гене FOXN1 находится в эпистазе по отношению ко всем этим генам. Мутанты по этому гену просто не имеют волос, поэтому гены окраса не могут проявиться в принципе.

Генетический контроль формирования окрасов шерсти у собак представляет прекрасные понятные примеры эпистаза.

Напомним себе, какие вещества отвечают за окраску волос. У собак, как и у многих других животных, а также у человека, существуют два пигмента-меланина в коже и в волосах — эумеланин и феомеланин. Эумеланин состоит из двух близких по строению веществ — одно из которых имеет черный цвет, а второе — коричневый. Феомеланин — несколько отличается по структуре и имеет оттенки от желтоватого до красноватого.

Читайте также:  Сколько раз нужно кормить месячного щенка йорка

Оба пигмента нарабатываются из аминокислоты тирозин в результате многоступенчатых биохимических реакций в специальных клетках, которые называются меланоцитами.

Из меланоцитов меланины транспортируются в клетки кожи (кератиноциты) и некоторые другие клетки организма, придавая им окраску. Клетки, накапливающие эумеланин, становятся темно окрашенными, а клетки, содержащие феомеланин, окрашиваются в розоватый цвет, как, например, кожа на губах у людей.

Все этапы синтеза меланинов контролируются на генетическом уровне, и нарушение какого-либо этапа мутациями в соответствующих генах приводит к хорошо заметным изменениям окраски кожи и волос.

Например, рецессивная мутация в локусе B (ген TYRP1) нарушает процесс синтеза черного компонента эумеланина. В результате в меланоцитах нарабатывается коричневый эумеланин.

Генетические основы окраса собак

Окрас собаки определяется специфической комбинацией нескольких десятков генов и взаимодействием разнообразных вариантов этих генов – аллелей. Такие гены отвечают за регуляцию синтеза пигментов и распределение пигментов по волосу или по телу собаки. Описано как минимум 20 генов, влияющих на проявление окраса. На сегодняшний день для 5 из них известны молекулярные механизмы функционирования и определены различные аллели.

Локус Е (extension) – «распределение цвета» — отвечает за наличие и распределение эумеланиновой (темной) пигментации. Известна рецессивная мутация в локусе Е – аллель е – блокирует появление темной пигментации. В гомозиготном состоянии – у собак с генотипом ее – будет отсутствовать темный (черный или коричневый) пигмент, и как следствие, собака будет рыжей («рецессивный рыжий»). Под действием модификаторов окраса рецессивный рыжий может иметь разные оттенки – ярко-рыжий, кремовый, лимонный, абрикосовый, оранжевый, светло-желтый и проч. Аллель е не влияет на пигментацию кожи, цвет носа и глаз, поэтому у рецессивных рыжих собак (ее) возможен черный окрас кожи и носа. В гетерозиготе Е доминирует над е, следовательно собака с генотипом Ее – будет с темным окрасом. Гомозиготная собака по аллели Е (ЕЕ) – темная собака (черная или коричневая). Кроме того, существует аллель Ем, отвечающая за распределение эумеланиновой окраски на морде собаки, и блокирующая темную пигментацию на других участках тела. Такое распределение окраса называют «маска». Аллель Ем доминирует над рецессивной аллелью e.

генотип окрас «скрытый окрас» — может проявляться у потомков
ЕЕ Темный (черный или коричневый)
Ее Темный (черный или коричневый) рыжий
ЕмЕ Темный (черный или коричневый) маска
ЕмЕм Рыжая собака с темной «маской»
Еме Рыжая собака с темной «маской» рыжий
ее Рыжий

Локус В (brown) – «коричневый» — отвечает за присутствие черного пигмента при условии наличия эумеланиновой пигментации (то есть у собак с генотипом Е-). Аллель В отвечает за черный окрас шерсти, рецессивная аллель b – коричневый цвет шерсти. Локус В влияет не только на цвет шерсти, но и на пигментацию кожи (например, подушечки пальцев), носа и цвет ресниц. У собак с генотипом ВВ и Вb – черный окрас шерсти и носа. У собак с генотипом bb — коричневый окрас шерсти и носа (все оттенки коричневого –шоколадный, кофейный, «рыжего» у Австралийской овчарки, Бордер колли, бронзовый у Ньюфаундлендов и проч.). У собак с генотипом ее окрас будет рыжий (из-за отсутствия эумеланина), вне зависимости от генотипа по локусу В.

генотип Окрас шерсти Цвет носа
Е- В- черный черный
Е- bb коричневый коричневый
ЕмЕм/е B- Рыжая собака с черной «маской» черный
ЕмЕм/е bb Рыжая собака с коричневой «маской» коричневый
ее B- Рыжий черный
ee bb Рыжий коричневый

Локус А (agouti) – агути – отвечает за распределение пигмента по волосу и по различным участкам тела собаки. Агути проявляется на фоне присутствия у собаки эумеланина (то есть аллели Е или Ем). Таким образом, у собак с генотипом ее агути не оказывает влияние на распределение пигмента, и окрас таких собак будет сплошным рыжим.

Локус А представлен серией множественных аллелей. Аллель ау – желтовато-коричневый («олений») или соболиный. Волос разделяется на цветовые зоны – конец волоса черный, середина рыжая, основание бесцветное. Оттенок колеблется от практически сплошного светло-бежевого до соболиного (среди шерсти светлого окраса встречаются отдельные волоски сплошного черного/коричневого цвета) в зависимости от ширины и расположения пигментных зон. У догов и мопсов палевый (светло-бежевый) окрас обеспечивается агути (генотип ау- в сочетании с аллелями Е – (сплошной бежевый) или Ем (бежевый с маской)). Однако у некоторый других пород (таксы, французский бульдог) светлый окрас может быть вызван как проявлением аллели ау локуса А, так и гомозиготностью по рецессивной аллели е (генотип ее). Аллель аw – агути «дикого типа» — зонарно-серый. Пигменты на волосе распределены кольцевыми зонами: зоны с темной пигментацией, с рыжей пигментацией и зоны без пигмента. На первый взгляд такой окрас может выглядеть серым. Зонарно-серый окрас типичен, к примеру, для маламута, сибирских хаски, лаек, кавказских и среднеазиатских овчарок, шнауцеров окраса перец с солью, серых немецких овчарок. Аллель аt – подпалый окрас (черно- или коричнево-подпалые). У собак с генотипом аtаt подпалины очерчены совершенно четко по типу окраса добермана. Такой окрас характерен для многих пород, кроме добермана: у такс, ротвейлеров, той-терьеров, бультерьеров и других. Трехцветность некоторых пород (колли, шелти) – это тоже пример подпалого окраса с добавлением белого (белый цвет обусловлен влиянием генов-модификаторов). Аллель а – рецессивный черный. Сплошной черный окрас (проявляется только в гомозиготном состоянии – генотип аа), распространен у черных немецких овчарок, встречается также у Американского Эскимосского, Самоеда и проч. Следует оговориться, что кроме «рецессивного» черного, существует и «доминантный» черный, за проявление которого ответственен другой локус (локус К), который пока не идентифицирован у собаки.

Как правило, мнения сводятся к следующему порядку доминирования одних аллелей над другими: ay > aw > at > a. Иногда ходят споры по поводу степени доминирования аллелей агути (предполагается неполное доминирование для некоторых аллелей). Собаки с генотипами ауау, ауаw, ауаt будут иметь палевый или соболиный окрас, аwаw, аwаt, аwа – зонарн-серый, аtаt, аtа – подпалый, аа – сплошной черный (рецессивный).

Локус D (dilution) – «ослабление цвета» — определяет интенсивность пигментации. Аллель D – обеспечивает развитие пигментации полной интенсивности. Аллель d – приводит к ослаблению окраса. D>d.

Собаки, гомозиготные по рецессивной аллели d (генотип dd), рождаются осветленными и остаются такими в течении всей жизни. У подпалых собак интенсивность темного окраса заметно снижается, а ослабление интенсивности окраса подпалин остается практически не заментной, хотя локус D влияет и на эумеланин (темный), и на феомеланин (рыжий). Черный окрас (генотип Е-B-dd) осветляется до «голубого» (характерного для голубых догов, доберманов и др.), а коричневый (генотип Е-bbdd) – до «изабеллового» (левретки окраса изабелла, изабелловые доберманы, той-терьеры и др.). Часто при этом нос и глаза также бывают осветленными.

Для некоторых пород разработан тест для определения аллели d, таких как Б. Мюнстерланд, Немецкий дог, Ньюфаундленд, для других пород (Доберман Пинчер, Левретка, Чау-чау, Шар-пей) также возможно определить носителей этой аллели, однако у этих пород по-видимому существуют и другие аллели локуса D, ответственные за осветление окраса.

Взаимодействие неаллельных генов: комплементарность, эпистаз, полимерия, плейотропия

Теперь обратимся к проблеме взаимодействия неаллельных генов. Если развитие признака контролируется более чем одной парой генов, то это означает, что он находится под полигенным контролем. Установлено несколько основных типов взаимодействия генов: комплементарность, эпистаз, полимерия и плейотропия.

Первый случай неаллельного взаимодействия был описан в качестве примера отклонения от законов Менделя английскими учеными У. Бетсоном и Р. Пеннетом в 1904 г. при изучении наследования формы гребня у кур. Различные породы кур характеризуются разной формой гребня. Виандотты имеют низкий, правильный, покрытый сосочками гребень, известный под названием “розовидного”. Брамы и некоторые бойцовые куры обладают узким и высоким гребнем с тремя продольными возвышениями — “гороховидным”. Леггорны имеют простой или листовидный гребень, состоящий из одной вертикальной пластинки. Гибридологический анализ показал, что простой гребень ведет себя как полностью рецессивный признак по отношению к розовидному и гороховидному. Расщепление в F2 соответствует формуле 3 : 1. При скрещивании же между собой рас с розовидным и гороховидным гребнем у гибридов первого поколения развивается совершенно новая форма гребня, напоминающая половинку ядра грецкого ореха, в связи с чем гребень был назван “ореховидным”. При анализе второго поколения было установлено, что соотношение разных форм гребня в F2 соответствует формуле 9 : 3 : 3 : 1, что указывало на дигибридный характер скрещивания. Была разработана схема скрещивания, объясняющая механизм наследования этого признака.

В определении формы гребня у кур принимают участие два неаллельных гена. Доминантный ген R контролирует развитие розовидного гребня, а доминантный ген P — гороховидного. Комбинация рецессивных аллелей этих генов rrpp вызывает развитие простого гребня. Ореховидный гребень развивается при наличии в генотипе обоих доминантных генов.

Наследование формы гребня у кур можно отнести к комплементарному взаимодействию неаллельных генов. Комплементарными, или дополнительными, считаются гены, которые при совместном действии в генотипе в гомо- или гетерозиготном состоянии обусловливают развитие нового признака. Действие же каждого из генов в отдельности воспроизводит признак одного из родителей.

Наследование генов, определяющих форму гребня у кур, полностью укладывается в схему дигибридного скрещивания, так как они ведут себя при распределении независимо. Отличие от обычного дигибридного скрещивания проявляется только на уровне фенотипа и сводится к следующему:

  1. Гибриды F1 не похожи ни на одного из родителей и обладают новым признаком;
  2. В F2 появляются два новых фенотипических класса, которые являются результатом взаимодействия либо доминантных (ореховидный гребень), либо рецессивных (простой гребень) аллелей двух независимых генов.

Механизм комплементарного взаимодействия подробно изучен на примере наследования окраски глаз у дрозофилы. Красная окраска глаз у мух дикого типа определяется одновременным синтезом двух пигментов — бурого и ярко-красного, каждый из которых контролируется доминантным геном. Мутации, затрагивающие структуру этих генов, блокируют синтез либо того, либо другого пигмента. Так, рецессивная мутация brown (ген находится во 2-й хромосоме) блокирует синтез ярко-красного пигмента, в связи с чем у гомозигот по этой мутации бурые глаза. Рецессивная мутация scarlet (ген располагается в 3-й хромосоме) нарушает синтез бурого пигмента, и поэтому гомозиготы stst имеют ярко-красные глаза. При одновременном присутствии в генотипе обоих мутантных генов в гомозиготном состоянии не вырабатываются оба пигмента и глаза у мух белые.

В описанных примерах комплементарного взаимодействия неаллельных генов формула расщепления по фенотипу в F2 соответствует 9 : 3 : 3 : 1. Такое расщепление наблюдается в том случае, если взаимодействующие гены по отдельности имеют неодинаковое фенотипическое проявление и оно не совпадает с фенотипом гомозиготного рецессива. Если это условие не соблюдается, в F2 имеют место иные соотношения фенотипов.

Например, при скрещивании двух разновидностей фигурной тыквы со сферической формой плода гибриды первого поколения обладают новым признаком — плоскими или дисковидными плодами. При скрещивании гибридов между собой в F2 наблюдается расщепление в соотношении 9 дисковидных : 6 сферических : 1 удлиненная.

Анализ схемы показывает, что в определении формы плода принимают участие два неаллельных гена с одинаковым фенотипическим проявлением (сферическая форма). Взаимодействие доминантных аллелей этих генов дает дисковидную форму, взаимодействие рецессивных аллелей — удлиненную.

Еще один пример комплементарного взаимодействия дает наследование окраски шерсти у мышей. Дикая серая окраска определяется взаимодействием двух доминантных генов. Ген А отвечает за присутствие пигмента, а ген В — за его неравномерное распределение. Если в генотипе присутствует только ген А (А-bb), то мыши равномерно окрашены в черный цвет. Если присутствует только ген В (ааВ-), то пигмент не вырабатывается и мыши оказываются неокрашенными, так же как и гомозиготный рецессив ааbb. Такое действие генов приводит к тому, что в F2 расщепление по фенотипу соответствует формуле 9 : 3 : 4.

Схема наследования окраски шерсти у мышей

F2

AB Ab aB ab
AB AABB
сер.
AABb
сер.
AaBB
сер.
AaBb
сер.
Ab AABb
сер.
AAbb
черн.
AaBb
сер.
Aabb
черн.
aB AaBB
сер.
AaBb
сер.
aaBB
бел.
aaBb
бел.
ab AaBb
сер.
Aabb
черн.
aaBb
бел.

F2: 9 сер. : 3 черн. : 4 бел.

Комплементарное взаимодействие описано также при наследовании окраски цветов у душистого горошка. Большая часть сортов этого растения имеет пурпурные цветы с фиолетовыми крыльями, которые характерны для дикой сицилийской расы, но есть также сорта с белой окраской. Скрещивая растения с пурпурной окраской цветов с растениями с белыми цветами Бетсон и Пеннет установили, что пурпурная окраска цветов полностью доминирует над белой, и в F2 наблюдается соотношение 3 : 1. Но в одном случае от скрещивания двух белых растений получилось потомство, состоящее только из растений с окрашенными цветами. При самоопылении растений F1 было получено потомство, состоящее из двух фенотипических классов: с окрашенными и неокрашенными цветами в соотношении 9/16 : 7/16.

Полученные результаты объясняются комплементарным взаимодействием двух пар неаллельных генов, доминантные аллели которых (С и Р) в отдельности не способны обеспечить развитие пурпурной окраски, так же как и их рецессивные аллели (ссрр). Окраска проявляется только при наличии в генотипе обоих доминантных генов, взаимодействие которых обеспечивает синтез пигмента.

Схема наследования окраски цветов у душистого горошка

пурп.
F2

CP Cp cP cp
CP CCPP
пурп.
CCPp
пурп.
CcPP
пурп.
CcPp
пурп.
Cp CCPp
пурп.
CCpp
бел.
CcPp
пурп.
Ccpp
бел.
cP CcPP
пурп.
CcPp
пурп.
ccPP
бел.
ccPp
бел.
cp CcPp
пурп.
Ccpp
бел.
ccPp
бел.

F2: 9 пурп. : 7 бел.

В приведенном примере формула расщепления в F2 — 9 : 7 обусловлена отсутствием у доминантных аллелей обоих генов собственного фенотипического проявления. Однако такой же результат получается и в том случае, если взаимодействующие доминантные гены имеют одинаковое фенотипическое проявление. Например, при скрещивании двух сортов кукурузы с фиолетовой окраской зерновок в F1 все гибриды имеют желтые зерновки, а в F2 наблюдается расщепление 9/16 желт. : 7/16 фиол.

Эпистаз — другой тип неаллельного взаимодействия, при котором происходит подавление действия одного гена другим неаллельным ему геном. Ген, который препятствует проявлению другого гена, называется эпистатичным, или супрессором, а тот, чье действие подавляется, гипостатичным. В качестве эпистатичного гена может выступать как доминантный, так и рецессивный ген (соответственно доминантный и рецессивный эпистаз).

Примером доминантного эпистаза служит наследование окраски шерсти у лошадей и окраски плодов у тыквы. Схема наследования этих двух признаков абсолютно одинаковая.

Схема наследования окраски шерсти у лошадей

F2

CB Cb cB cb
CB CCBB
сер.
CCBB
сер.
CcBB
сер.
CcBb
сер.
Cb CCBb
сер.
CCbb
сер.
CcBb
сер.
Ccbb
сер.
cB CcBB
сер.
CcBb
сер.
ccBB
черн.
ccBb
черн.
cb CcBb
сер.
Ccbb
сер.
ccBb
черн.
ccbb
рыж.

F2: 12 сер. : 3 черн. : 1 рыж.

Из схемы видно, что доминантный ген серой окраски С является эпистатичным по отношению к доминантному гену В, который обусловливает черную окраску. В присутствии гена С ген В своего действия не проявляет, и поэтому гибриды F1 несут признак, определяемый эпистатичным геном. В F2 класс с обоими доминантными генами сливается по фенотипу (серая окраска) с классом, у которого представлен только эпистатичный ген (12/16). Черная окраска проявляется у 3/16 гибридных потомков, в генотипе которых отсутствует эпистатичный ген. В случае гомозиготного рецессива отсутствие гена-супрессора позволяет проявиться рецессивному гену с, который вызывает развитие рыжей окраски.

Доминантный эпистаз описан также при наследовании окраски пера у кур. Белый цвет оперенья у кур породы леггорнов доминирует над окрашенным черных, рябых и других цветных пород. Однако белая окраска других пород (например, плимутроков) рецессивна по отношению к цветному оперению. Скрещивания между особями с доминантной белой окраской и особями с рецессивной белой окраской в F1 дают белое потомство. В F2 наблюдается расщепление в соотношении 13 : 3.

Анализ схемы показывает, что в определении окраски пера у кур принимают участие две пары неаллельных генов. Доминантный ген одной пары (I) является эпистатичным по отношению к доминантному гену другой пары, вызывающему развитие окраски (C). В связи с этим окрашенное оперение имеют только те особи, в генотипе которых присутствует ген С, но отсутствует эпистатичный ген I. У рецессивных гомозигот ссii отсутствует эпистатичный ген, но у них нет гена, который обеспечивает выработку пигмента (C), поэтому они имеют белую окраску.

В качестве примера рецессивного эпистаза можно рассмотреть ситуацию с геном альбинизма у животных (см. выше схему наследования окраски шерсти у мышей). Присутствие в генотипе двух аллелей гена альбинизма (аа) не дает возможности проявиться доминантному гену окраски (B) — генотипы ааВ-.

Полимерный тип взаимодействия был впервые установлен Г. Нильсеном-Эле при изучении наследования окраски зерна у пшеницы. При скрещивании краснозерного сорта пшеницы с белозерным в первом поколении гибриды были окрашенными, но окраска была розовой. Во втором поколении только 1/16 часть потомства имела красную окраску зерна и 1/16 — белую, у остальных окраска была промежуточной с разной степенью выраженности признака (от бледно-розовой до темно-розовой). Анализ расщепления в F2 показал, что в определении окраски зерна участвуют две пары неаллельных генов, действие которых суммируется. Степень выраженности красной окраски зависит от количества доминантных генов в генотипе.

Полимерные гены принято обозначать одинаковыми буквами с добавлением индексов, в соответствии с числом неаллельных генов.

Действие доминантных генов в данном скрещивании является аддитивным, так как добавление любого из них усиливает развитие признака.

Схема наследования окраски зерна у пшеницы

F2

A1A2 A1a2 a1A2 a1a2
A1A2 A1A1A2A2
красн.
A1A1A2Aa2
ярко-розов.
A1a1A2A2
ярко-розов.
A1a1A2a2
розов.
A1a2 A1A1A2a2
ярко-розов.
A1A1a2a2
розов.
A1a1A2a2
розов.
A1a1a2a2
бледно-розов.
a1A2 A1a1A2A2
ярко-розов.
A1a1A2a2
розов.
a1a1A2A2
розов.
a1a1A2a2
бледно-розов.
a1a2 A1a1A2a2
розов.
A1a1a2a2
бледно-розов.
a1a1A2a2
бледно-розов.

F2: 15 окраш. : 1 бел.

Описанный тип полимерии, при котором степень развития признака зависит от дозы доминантного гена, называется кумулятивным. Такой характер наследования обычен для количественных признаков, к которым следует отнести и окраску, т.к. ее интенсивность обусловлена количеством вырабатываемого пигмента. Если не учитывать степень выраженности окраски, то соотношение окрашенных и неокрашенных растений в F2 соответствует формуле 15 : 1.

Однако в некоторых случаях полимерия не сопровождается кумулятивным эффектом. В качестве примера можно привести наследование формы семян у пастушьей сумки. Скрещивание двух рас, одна из которых имеет треугольные плоды, а другая яйцевидные дает в первом поколении гибриды с треугольной формой плода, а во втором поколении наблюдается расщепление по этим двум признакам в соотношении 15 треуг. : 1 яйцев.

Данный случай наследования отличается от предыдущего только на фенотипическом уровне: отсутствие кумулятивного эффекта при увеличении дозы доминантных генов обусловливает одинаковую выраженность признака (треугольная форма плода) независимо от их количества в генотипе.

К взаимодействию неаллельных генов относят также явление плейотропии — множественного действия гена, влияния его на развитие нескольких признаков. Плейотропное действие генов является результатом серьезного нарушения обмена веществ, обусловленного мутантной структурой данного гена.

Так, например, ирландские коровы породы декстер отличаются от близкой по происхождению породы керри укороченными ногами и головой, но одновременно лучшими мясными качествами и способностью к откорму. При скрещивании коров и быков породы декстер 25% телят имеют признаки породы керри, 50% сходны с породой декстер, а в остальных 25% случаев наблюдаются выкидыши уродливых бульдогообразных телят. Генетический анализ позволил установить, что причиной гибели части потомства является переход в гомозиготное состояние доминантной мутации, вызывающей недоразвитие гипофиза. В гетерозиготе этот ген приводит к появлению доминантных признаков коротконогости, короткоголовости и повышенной способности к отложению жира. В гомозиготе этот ген имеет летальный эффект, т.е. в отношении гибели потомства он ведет себя как рецессивный ген.

Летальный эффект при переходе в гомозиготное состояние характерен для многих плейотропных мутаций. Так, у лисиц доминантные гены, контролирующие платиновую и беломордую окраски меха, не оказывающие летального действия в гетерозиготе, вызывают гибель гомозиготных зародышей на ранней стадии развития. Аналогичная ситуация имеет место при наследовании серой окраски шерсти у овец породы ширази и недоразвития чешуи у зеркального карпа. Летальный эффект мутаций приводит к тому, что животные этих пород могут быть только гетерозиготными и при внутрипородных скрещиваниях дают расщепление в соотношении 2 мутанта : 1 норма.

Схема наследования платиновой окраски у лис

F1

A a
A AA
погибают
Aa
платин.
a Aa
платин.
aa
черн.

F1: 2 плат. : 1 черн.

Однако большинство летальных генов рецессивны, и гетерозиготные по ним особи имеют нормальный фенотип. О наличии у родителей таких генов можно судить по появлению в потомстве гомозиготных по ним уродов, абортусов и мертворожденных. Чаще всего подобное наблюдается в близкородственных скрещиваниях, где родители обладают сходными генотипами, и шансы перехода вредных мутаций в гомозиготное состояние достаточно высоки.

Плейотропные гены с летальным эффектом есть у дрозофилы. Так, доминантные гены Curly — загнутые вверх крылья, Star — звездчатые глаза, Notch — зазубренный край крыла и ряд других в гомозиготном состоянии вызывают гибель мух на ранних стадиях развития.

Известная рецессивная мутация white, впервые обнаруженная и изученная Т. Морганом, также имеет плейотропный эффект. В гомозиготном состоянии этот ген блокирует синтез глазных пигментов (белые глаза), снижает жизнеспособность и плодовитость мух и видоизменяет форму семенников у самцов.

У человека примером плейотропии служит болезнь Марфана (синдром паучьих пальцев, или арахнодактилия), которая вызывается доминантным геном, вызывающим усиленный рост пальцев. Одновременно он определяет аномалии хрусталика глаза и порок сердца. Болезнь протекает на фоне повышения интеллекта, в связи с чем ее называют болезнью великих людей. Ею страдали А. Линкольн, Н. Паганини.

Плейотропный эффект гена, по всей видимости, лежит в основе коррелятивной изменчивости, при которой изменение одного признака влечет за собой изменение других.

К взаимодействию неаллельных генов следует отнести также влияние генов-модификаторов, которые ослабляют или усиливают функцию основного структурного гена, контролирующего развитие признака. У дрозофилы известны гены-модификаторы, модифицирующие процесс жилкования крыльев. Известно не менее трех генов-модификаторов, влияющих на количество красного пигмента в волосе крупного рогатого скота, в результате чего окраска шерсти у разных пород колеблется от вишневой до палевой. У человека гены-модификаторы изменяют окраску глаз, усиливая или ослабляя ее интенсивность. Их действием объясняется разная окраска глаз у одного человека.

Существование явления взаимодействия генов привело к появлению таких понятий, как “генотипическая среда” и “генный баланс”. Под генотипической средой подразумевается то окружение, в которое попадает вновь возникающая мутация, т.е. весь комплекс генов, имеющихся в данном генотипе. Понятие “генный баланс” касается соотношения и взаимодействия между собой генов, влияющих на развитие признака. Обычно гены обозначают названием признака, возникающего при мутации. На самом же деле проявление этого признака часто является результатом нарушения функции гена под влиянием других генов (супрессоров, модификаторов и др.). Чем сложнее генетический контроль признака, чем больше генов участвуют в его развитии, тем выше наследственная изменчивость, так как мутация любого гена нарушает генный баланс и приводит к изменению признака. Следовательно, для нормального развития особи необходимо не только присутствие генов в генотипе, но и осуществление всего комплекса межаллельных и неаллельных взаимодействий.

Перейти к чтению других тем книги «Генетика и селекция. Теория. Задания. Ответы»:

Оцените статью